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Squeezing flow of fibre-reinforced viscous fluids
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Abstract. A relatively simple continuum model is described for the viscous flow of highly anisotropic materials
such as fibre-reinforced resins. The theory is applied to the flow of such a fluid when squeezed between two rigid
platens.

1. Introduction

In this note we present a flow analysis based on the concept of a highly anisotropic viscous
fluid. For such a material the extensional viscosity (or modulus) in a given preferred direction
is much greater than its shear and transverse extensional viscosities (or moduli). This
behaviour is a natural characteristic of materials such as fibre-reinforced resins at elevated
temperatures; whilst the composite is relatively free to distort and flow in directions that are
locally transverse to the fibres and to shear along the fibres, extensional flow in the fibre
direction is severely constrained by the fibres themselves.

The theory for highly anisotropic solids is now well-developed for linear and non-linear
elastic and plastic behaviour. However, relatively little has been done in viscoelasticity and
none for fluids.

A particularly useful model for solids has been the ideal fibre-reinforced material
(e.g., [1], [2]). This is not only incompressible but also inextensible in the fibre-direction;
furthermore, the constraint is assumed to be continuously distributed through the
composite and to be convected with the deformation. This simple model has proved
to be extremely useful in obtaining good approximate solutions to a large number of
boundary-value problems for both small and large deformations, especially for those
under plane strain or axisymmetric conditions. It has also highlighted the significant and
occasionally surprising differences in solution brought about by the high anisotropy
as compared with conventional isotropic or weakly anisotropic behaviour. These
"ideal" solutions have been established as "outer" asymptotic solutions of the more
accurate, but more complex, equations of linear and non-linear transversely isotropic
elasticity with small extensibility in the preferred (fibre) direction. Accordingly the pre-
dictions of the ideal theory can be meaningfully interpreted and assessed for "real" material
behaviour.

It is therefore anticipated that similar simplified, but useful, analysis can be obtained for
highly anisotropic viscous fluids, and in this note we illustrate such a solution for the
important practical problem of transverse flow induced by squeezing the fluid between two
rigid platens ([3-5]). For simplicity, and since many resins behave as Newtonian fluids, we
restrict attention to linear viscous fluids.
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2. Fibre-reinforced linear viscous fluids

The constitutive equation for a conventional viscous fluid gives the state of stress a at a point
x and time t in terms of the rate-of-strain d at that same point and time. For an incompress-
ible Newtonian fluid, the relation is linear and takes the familiar form

a = -pI + 2d, trd = 0, (1)

or, in terms of Cartesian components,

aij = -p(ij + 2dj, d = 0, (i,j = 1, 2, 3), (2)

where the usual convention of summation over repeated indices is adopted. Here denotes
the (shear) viscosity of the fluid, p is the hydrostatic pressure and d is related to the velocity
v through

d - 1 {(Vv) + (VV) T}, d = x I (3)
2 \~·1 2 Oaxj xiJ

The pressure is an arbitrary function of x and t and is the reaction to the internal constraint
of incompressibility.

The presence of relatively strong fibres radically alters the response of the fluid, introduc-
ing a preferred "strong" direction a at every point. By assuming that the stress a will now
depend not only on d but also on a, it is straightforward to show that the most general linear
stress-strain-rate relation must be

ai = -pij + 2 Tdi + 2 (//L - ?T)(aiakdk + aakdik) + ELajajama, d , (4)

with

d, = 0. (5)

Here p still denotes the hydrostatic pressure, but L and NT are the viscosities for shear flow
respectively along and transverse to the fibres, and EL is related to the extensional viscosity
in the fibre-direction.

Equation (4) may be interpreted as the constitutive equation for a transversely isotropic
fluid, with the fibre-direction a being the local axis of rotational symmetry. It should be noted
that although the fibres may all be parallel and straight in the initial configuration, in general
there is no constraint on their remaining so in the subsequent flow.

For the "ideal fibre-reinforced material" model, we also have local inextensibility in the
a-direction. Assuming convection of the fibres with the deformation, this implies that

ajajd = O, aa = 1 (6)

and that the material time derivative of a is given by Spencer [1] as

di = (i - aaj)akavI/Oxk = akOvilOxk. (7)
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Furthermore, equation (4) is replaced by

a = -pb6 + Taai + 2 dj + 2 (L - qr)(aiakdkj + aakdki), (8)

where T is an arbitrary stress reaction to the further internal constraint of fibre-inextensibility.
Both T and p are arbitrary functions of x and t, being independent of the rate-of-strain field.
They are, in effect, determined from the equations of motion, which in the absence of body
forces take the form

ai = (9)
axj

Equations (5)-(9) constitute the complete set of governing equations for an ideal fibre-
reinforced linear viscous fluid.

For some problems the fibre-direction remains constant throughout the flow. In these
cases, with a = (0, 0, 1), equations (5)-(8) simplify to give

d,, = -d 2 2, d33 = 0 (10)

and

al = -p + 2 Td,,, a22 = -p - 2 Td,,, U33 = -p + T,
(11)

a12 = 2/Td12 , al3 = 2rLdl3, a23 = 2 11Ld 23 .

If furthermore no shear occurs parallel to the x3-axis, then the flow is planar, with

VI = v I(xi, x2, t), v2 = v2(XI, X 2, t), v3 = 0,

all -p + 2 TaVIl/aXl, 22 = -p - 2TOVl/aXl, (12)

' 33 = -p + T, ' 12 = qT(aVl/aX2 + av 2 /axI), O13 = 23 = 0,

yielding the same equations as those for plane Newtonian flow [6].

3. Squeezing flow

We now consider the particular problem of squeezing an initially rectangular block of fluid
between two rigid platens which are slowly brought together under normal loading. The
fibres are initially straight and parallel, and lie in planes parallel to the platens.

The problem was first posed by Cogswell [3] who presented a simplified analysis to give
an "apparent viscosity" qA at the beginning of the flow, in terms of the geometry of the block,
the load applied and the initial rate of closing-up of the platens. Further work, including
experimental data, has been reported by Barnes [4], who modified Cogswell's analysis to take
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account of continued flow, and by Jones and Wheeler [5]. The following analysis is more
rigorous than that of [3] and [4], and allows more consideration of the effect of different slip
conditions in the contact regions between fluid and platens. We believe that it also has the
merit of the being derived from a self-consistent theory, namely that described above.

The axes are chosen such that the x3-axis is parallel to the initial fibre-direction and the
x2-axis is perpendicular to the platens; the initial cross-section of the fluid (ref. Fig. 1) is
denoted by

-L 0 < x, < L0, -H 0 < x2 < H0 .

During the flow the thickness 2H of the fluid gradually decreases, and the boundary
conditions at the rigid platens require that the normal velocity there is dependent only on
the time, and independent of both xl and x3:

v2 = +±H(t) at x2 = + H(t); (13)

the superposed dot denotes differentiation with respect to time. Furthermore, continued
contact with the platens implies that the two surface layers of fibres will remain straight and
parallel through the flow. Finally we note that in practice the aspect ratio Ho/Lo is small, and
we assume this.

All these considerations suggest that a suitable choice of flow field is given by

vl = v(xI, x2, x3, t), 2 (X2, t), 3 = V3 (X1, X2, X3, t)

and

a = (0,0,1).

The symmetry of the problem requires that v,, v2 and v3 are odd functions of xl, x2 and x3
respectively, with

v,= 0onxI = 0, v2 = onx2 = 0, v3 = onx3 = 0O (14)
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Hence inextensibility in the fibre-direction implies that

V3 = 0

throughout the fluid. Then incompressibility gives

- - = - v (say),
Ox, OX 2 2

85

(15)

where the superposed dash indicates differentiation with respect to the single space coor-
dinate x2. Integration with respect to x,, together with (14), yields

(16)vI = -XIv2(X 2, t).

The flow is planar, and equations (12) take the form

a = -p - 2/v', 22 = -p + 2v2, 33 = -p + T,

1 2 = -Xl V2', 13 = 2 3 = 0. (17)

Here, for convenience, is used to denote rlT, the only viscosity in the analysis.
If we now make the usual assumption of creeping flows that the inertial terms may be

neglected in the equations of motion (9), substitution of (17) into (9) and straightforward
integration result in

p = Po + (v; - A),

where

V2 = ½Ax2 + Bx 2.

(18)

(19)

Here A, B and PO are functions of t only, and we have ensured that v2 is an odd function of
x2. From (16) and (19) we obtain

V, = -(Ax2 + B)x, (20)

and

a, = -Po + r{Ax2 - 3(Ax2 + B)), a1 2 = -2?Ax, 2 ,

a22 = -Po + 1{Ax + Ax2 + B}. (21)

Zero traction on the two edges perpendicular to the fibre-direction gives

T = p.
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The three arbitrary functions A, B and po are determined by requiring that
(i) the edges x, = + L are traction free,
(ii) the total compressive load F is specified on each platen x2 = + H, and

(iii) the conditions in the contact region (e.g., no-slip, or negligible friction, etc.) are
satisfied.

Equations (13) and (19) then provide a rate equation to relate F with H(t):

fI = (AH 2 + B)H. (22)

The edge surfaces will vary with time since incompressibility together with inextensibility
in the x3-direction imply that the cross-sectional area is conserved (with value 4LO HO) during
the flow. In general they will also become curved, and the pointwise condition of zero
traction will not be satisfied by the present simple form of flow field. However, we can satisfy
global equilibrium of the edge regions of the fluid (such as the shaded area ABC in Fig. 1)
provided

_ H a( + L, 2, t) dx 2 = 0;

here 2L(t) denotes the total length of the contact region with each platen. Substituting from
(21) then leads to

Po = -(AH 2 + 3B -AL 2 ). (23)

We note that the pointwise mismatch in the edge boundary tractions will lead to edge effects
which should be small, especially for sufficiently small aspect ratios.

The compressive load, per unit length in the fibre-direction, is given by

F = - _L a2 2 (X,, H, t) dx = 4L(½AL2 - AH2 - 2B). (24)

An alternative expression can be obtained from

F* = - L. a22(X, 0, t) dx, = 2?1L*(AL 2 - AH 2
- ½AL*

2
- 4B). (25)

Here 2L*(t) is the maximum total width of the specimen, being the total width of the
midplane x2 = 0. It differs from 2L(t), with the "average" width 2L = 2LoHo/H being
intermediate between the two values. The two values F and F* are not equal, except when
L = L* (as initially, for instance); they differ by the x2-component of the resultant traction
on the upper (or, equivalently, the lower) surfaces of the edge regions ABC, necessary to
maintain the predicted flow field. Again this gives rise to an edge effect, since the exact
problem has zero traction on such boundaries. In any case we cannot expect the flow field
(19) and (20) to be a good approximation to the flow in such edge regions, since the rigid
platens are not in contact there.

Initially L* = L, and although in general the difference L* - L will not remain zero, we
expect that in practice it will be no more than O(H) so that

L = L + O(H) = LoH o /H + O(H). (26)
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4. Zero-friction contact

The remaining condition to be satisfied is that specified at the platens. If the interfaces
between fluid and platens are free from shear traction, such as by the effect of introducing
a lubricating agent, then the contact condition is a12 = 0 at x2 = + H. From (21) and (24)
this immediately implies that

A = 0, B = -F/(8qL),

so that

VI = -Bxl, 2 = Bx 2, ali = 12 = 0, a22 = -F/2L.

In fact, these give the expected simple solution of pure shear, in which the cross-sectional
shape remains rectangular with

L = LoHo/H.

So now F and H are related through

F = - 8 1 LoHoI/H2

so that, for a constant load F0,

1 1 Fot (27)
-- FO t (27)H Ho 81LoHo

5. No-slip contact

If we assume that no slip occurs between fluid and platen in the contact region
-L < xl < L at x,2 = H, then v, is zero there. Hence, from (20) and (24),

3F
A 4tL(L2 + 32), B = -AH 2 . (28)

(i) L(t) = L; constant contact region

The velocity field v2 = v2(x2, t) implies that the flow cannot increase the contact region.
Hence, from (22) the relation between F and H in the early stages of the developing flow is
determined from

= - 2 + 3H2) (29)2?IL 0 (L2 + 3H 2) 
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and hence

1 1 6 /H 1 (
H2 H2 L2 InHoo JL F(tL) dt. (30)

For Ho/Lo < 1, the log term is negligible, and for constant load F0 equation (30) yields the
simple relation

1 1 Fo t
H2 H LO (31)

We note also that, for Ho/Lo 1, the expression (29) yields the relation deduced by
Cogswell [3] for the apparent viscosity at the beginning of the flow:

FH,3
FHo 0 , H = hi(O).2LoH

(ii) L(t) > L; varying contact region

The tractions that need to be applied on the edge surfaces ABC in order to maintain
the velocity field (19) indicate that in the actual situation of zero traction the developing
edge region will spread onto the platens, thus increasing the contact region. Then, from
(26),

L - LoHo/H

and (29) is replaced by

FH3 FH6

2H L(L2 + 3H2 ) 2qiLoHo(LHo2 + 3H 4) 

Now H and F are related through

2H¢2 IlI I I) = ,I
_ oL H -

2
0 0 F(t') dt'. (33)

For Ho/Lo , 1, the second term is negligible, and for constant load F0, (33) simplifies to give

1 1 5Fot
I H 5 H- I 2t 1 L- Vot~~H~~ ~(34)

H 5 Ho5 - 2LHo3

Finally, we note that for Ho/Lo < 1, expression (32) gives the relation given by Barnes [4]
for the apparent viscosity of the developed flow.
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6. Conclusions

This paper is an attempt to draw attention to the potential of the concept of highly
anisotropic fluids for describing flows of fibre-reinforced composites at elevated tem-
peratures. Whilst the solution presented for slow squeezing flow is based on the "ideal"
model, which assumes fibre-inextensibility, a more general asymptotic solution for slightly-
extensional, real composites can be derived for which the present solution would be the
zeroth order approximation. Obviously such an approach is not restricted to this particular
application; other problems can be treated in a similar manner within the same coherent
mathematical framework.

Finally, in a practical context, we note the widely-different relations (27), (31) and (34)
between the constant applied load F0 and the resulting flow as indicated by the thickness
variable H(t). This disparity appears to agree with the observation that a change in the
adhesion conditions at the contact surfaces can radically affect the flow.
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